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STATISTICAL MECHANICS OF REACTING DENSE PLASMAS*

: F. J. Rogers
University of California Lawrence Livermore Laboratory
Livermore, California 94550

Abstract

A review of the quantum statistical theory of strongly coupled many
component piasmas is given. The theoretical development is shown to consist
of six separate parts. Compensation between bound and scattering state
contributions to the partition function and use of the shifted Debye energy
levels are important aspects of the analysis. The results are valid when the
electrons are moderately coupled to the heavy ions, i.e. At:a < 1, but no
restriction is placed on the coupling between heavy ions. Another restriction
is that )\/)\D < 1, i.e., the thermal deBroglie wavelength_ is less than the
Debye length. Numerical calculations of PV/NokT and CV are given for a

Rubidium plasma.

*Work per formed under the auspices of the U.S. Department of Energy by
Lawrence Livermore Laboratory under contract #W-7405-Eng-48.
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I. Introduction

The equation of state of plasmas has been an active research area for many
years. During most of this time interest has been stimulated by astrophysical
applications. Besides being directly applicable to such problems as
predicting the evolutionary history of stars, the state of ionization and
equation' of state, are also required in opacity and transport calculations.
Additionally, very good equation of state calculations will be required to
adequately answer the current question concerning the conditions for which
multi-component plasmas phase separate.l In recent years interest in the
properties of partially ionized matter has been stimulated by laser fusion,
MHD, and other energy generation research programs.

Early research was based on analogy with dissociative equilibrium in
molecular gases which have an ideal limit for very low densities. This met
with immediate difficulties since ionic and atomic partition functions are
non-convergent. Various ad hoc methods for cutting off the divergence were
introduced. The first successful calculation of non-ideal effects was made in
1923 by Debye and Huckel, whose interest was in electrolytic solutions.
Subsequent workers added the Debye-Huckel free energy to the ideal plasma
model free energy. The ionization state and thermo-properties were then
obtained by free energy minimization. A summary and exhaustive list of
references of work prior to 1966 is given by Brush.2 A good review and list
of references up through 1975 is given in the monograph by Ebeling, Kraeft and
Krenp.3

Due to the analytical complexity of a rigorous treatment of non-ideal

plasmas most of the literature cited in the above review articles is concerned

with hydrogen plasmas.2 These results are very importani: to our fundamental
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linderstanding but have limited applications. Besides being restricted to Z=1,
they are also limited to low density. Two recent attempts to treat slightly
non—-ideal plasmas for arbitrary Z and all stages of ionization have been

given.4’5

These are based on free energy minimization procedures which
require some assertions as to how individual atoms and ions can be uncoupled
from the plasma. In the present paper we avoid making these assertions by

3 calls the

working in the grand canonical formalism or what Krasnikov
"physical model". Furthermore high Z plasmas for which the ions are very

non-ideal, while the electrons are moderately non ideal will be treated.

II. OQutline of Theoretical Method

Most of what will be discussed in this article has been published

elsewhere .6 z

The objective here is to summarize the theory and identify
the most salient points. Some of the theory concerning strongly coupled ions
and calculations of the equation of state of Rubidium are new.

Figure 1 is .a flow chart of the theoretical method. Step 1 introduces the
Mayer S-function which is a sum over all cluster integrals or alternatively
the virial coefficients. Since the neglect of the uncertainty principle
causes the electron-ion terms to diverge as r » 0. It is obvious at the
outset that reacting plasmas require quantum mechanics. This type of
divergence anly involves few body terms. A more intransigent type of
divergence occurs in all virial and cluster coefficients for Coulomb systems
in the limit r + ». This divergence is essentially classical and can only be
removed through many-body summation procedures. Each contribution to the many

body sum has only small quantum modifications for r < X, the thermal de

Broglie wavelength. As a result it is possible to carry out the many-body
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analysis classically and insert Slater sums at the appropriate places in the
final result in order to remove theAfew-body electron-ion divergencies. The
result is rigorous provided the ratio ?‘/KD is <1l. Correction terms in
X/)‘D can be added at a later stage of the analysis.

In step 2 we follow the work of Abe8

who showed for the one-component
plasma model (OCP) that the long range divergencies can be eliminated by
appropriate reorganizations in powers of the potential (BU). The leading term
in the resultant expression for S is the familiar Debye-Huckel Correction.
Higher order terms resemble virial coefficients for the screened Coulomb
potential. Since we are interested in real many component plasmas it is
necessary to carry out a multi-component generalization of Abe's work. After

the appropriate introduction of quantum mechanics this yields the equation of

state of non-ideal completely ionized gases according to

(F—FO)/VkT = -§ (1)
1 95
i 1

In order to use Egs. (1-2) to calculate the equation of state for incomplete
ionization it is necessary to make assertions as to how composite particles
enter the ideal gas free energy, FO' and the S function. The resulting
expressions can then be used to minimize the free energy with respect to
changes in the composition.

Since ionization equilibrium is naturally included in the grand canonical
formalism it is the fundamentally correct way to treat this aspect of the
problem. Unfortunately it is subject to all the divergencies present in the

canonical formalism and other more complicated divergencies as well. 1In step
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3 va procedure foi: avoiding this difficulty is introduced. This is to find a
method for generating the activity expansion as a functional of S, thereby
obtaining a divergence free expression for P/KT in the grand canonical
formalism. Degeneracy corrections are added to the leading terms of this

9 Some additional remarks

expression using the method of Cooper and DeWitt.
concerning this step are given in Appendix A.
The S function involves virial coefficients for the Debye potential. In
order to properly treat ionization equilibrium it is necessary to collect all
the bound state terms that contribute to each power of the activity and thus
obtain the cluster coefficients for the Debye potential, e.g., z3b3 =
z3(—B3/2 + 2/B§) . This corresponds to step 4 of Figure 1. 1In Figure
4 some specific examples for the second and third cluster coefficients are
given. The underlined numeral subscripts indicate multicomponent structure.
The procedure for incorporating composite particles into the activity
equations, rests on the observation that the formation of bound states for
kT < E‘.b , the binding energy, lowers the order of the cluster
coefficients. For example, due to its exponential temperature dependence the
bound state part of the electron-ion second cluster coefficient, beu' enters
the cluster expansion like a new ideal particle, while the continuum state
part enters like a real two-body interaction between electrons and ions.
Because of this it is nedessary to introduce an augmented set of activity
variables, such that, the leading term in the revised activity series

correspands to the Saha ionization equilibrium equation.6'7

Scattering
states only appear in the interaction corrections of the properly ordered
activity series, i.e., proper treatment of ‘bound clusters requires the
decomposition of the trace into bound and scattering parts. This corresponds

to the first part of step 5 in Figure 1.
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The renormalization of the grand partition function, just described, works
with the complete trace, so that, some latitude in how one defines a composite
particle is afforded. An improper decomposition will ultimately be rectified
through high order terms. However, since in general only a few low order
terms will be evaluated, a physically realistic decomposition must be made.
It has been shown that the well known compensation between bound and

scattering states leads naturally to a proper decomposition procedure.7

The
resulting effective bound state sum is convergent and there is no need to
invoke any cutoff criteria as was done in early work on this problem. A
specific example of how the two body cluster term is split is shown in Figure
5. In brief it shows the two leading terms in the bound state high
temperature expanéicn included with the scattering state contribution. This
is because as shown in Ref. 7 (1977) these terms almost precisely cancel
similar terms in the scattering state part of the trace.

At this point we have shown how to identify composite particle
contributions in the S expansion, but only in the ideal gas limit. To go
beyond this we need to reorganize the terms so that those terms that
correspond to composite particles enter the interaction corrections similar to
fundamental particles; e.g., the Debye length must be transformed according to

2 2
AD(ze+Z za) > AD(ze+z

2 . ,
za+(z—l) zea+...). The first step in
this process is indicated in Figure 6. An explicit expression for the
*
activity of one-electron composites appears on Figure 7. Since Aea

depends on the activity according to zl/ 2

» terms in the expansion of exp
(A;a) go together with similar terms in AIi appearing elsewhere in

the S expansion and give rise to the transformation of the Debye length
indicated above. An important result of this,‘ as shown in Figure 7, is that

the energy levels that enter the definition of z eg are the shifted Debye
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*
energy levels. Due to the expansion in terms of Aij the resulting
' *
equations, as a practical matter, are only applicable when 1\i 3 < 1.

Since when 72 >> 1

for most interesting regions of p,T space, the methods being discussed here
will for practical purposes be limited to Z < 4; unless some way to
incorporate strong ion couwpling is introduced.

The final step in Figure 1 is therefore to go beyond the perturbation
expansion for the classical ion-ion contribution. This is accomplished by

considering the complete set of ion terms, i.e., s » etc. as a group.

oo’ Saoa

By performing accurate numerical calculations for S and s a general

Qoo
fitting formula for all the S, is extracted. When Zzz(x/ze >> 1 it

follows that Si +> S p SO that we can check the reliability of the

on oC
fitting function. It is found to be very good for T = (1\2/3)1/3 < 10. An
additional correction factor is then applied to bring the fit results into
agreement with the OCP in the high Z limit.

When Z >> 1 the S expansion can be shown to inadequétely treat the heavy

.ion contribution and it is necessary to recollect terms so that the most
important term froni each group of terms invqlving S a sequentially larger
number of times must be added to get the leading non-ideality correction.
Next all the second most important terms must be added, etc. The Final result

of this is



P .
kT =ze+za+zea+,..+Pl+P2+... (4)
whare
s
' Izy 3s
Pl = § +Z zi(e -1 - ?Z—:- ) (5)
1 1
93 38
1 dzy 3z
T2 ZJZ L _]Dz 3z, (e -1 (e -1) (6)
- : c
S = Sion+z e /kT AD+z s +Zz z,s on+2zezea e, e + .. (7)
S = i Zzez/kT +s__ +s + v (8)
ion o )‘D o0 oo

III. Numerical Calculations

A. Energy Levels and Phase Shifts

To evaluate thermodynamic properties of strongly coupléd reacting plasmas
using the results of Section II requires a large computer code which is
referred to as ACTEX. In order to calculate composite particle activities we
need to obtain multi-electron energy levels for the Debye potential.
Calculation of multiparticle scattering states is also required. This will be
accomplished through the introduction of effective-two particle potentials,
e.qg., the interaction of an electron with Rb+ is treated as a two-body
problem. The potential used to calcuate energy levels is shown in Figure 8.
It is composed of a long range part and exponential screened Coulomb terms for
each shell of core electrons. The parameters in the potential are determined
by solving a relativistic wave equation such that it reproduces the ground

state energies of experimentally measured members of a given isoelectronic
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sequence. The functions o, B, Y, etc. were then obtained by a least squares
fit. Excited states having the same parentage as the gtound state can also be
calculated with the V(Z,r) given in Figure 8. To calculate the energy of
states of different parentage cne could obtain slightly different functions ¢,
. B, Y for each distinct parent state. Since this would be 'é large undertaking,
all states having a parentage different from the ground state are added by
finding fitting functions that locate their positions relativé to the states
of the V(Z,r) potential. These states are obtained by solving the wave
equation for particular values of Z.

The procedure just described yields accurate energy levels for
multi-electron bound states in the isolated ion limit. What is actually
required are the energy levels for the Debye potential. These are obtained by
adding a Debye screening factor to the long range part of the potential. This
is clearly valid wben >‘D >> than the core radius. By solving a two-electron
variational problem it can be shown that the screening of only the long-range
part of V(Z,r) yields quite good results except when the binding energy of the
outermost electrons approaches zero. This can be seen in Figure 9 where one
and two parameter variational calculations for He are compared with solutions
to the Schroedinger equation using the potential V(Z,r).

The potential V(Z,r) can also be used to calcuate the continuum
contribution for electron-composite ion interactions. If the charge
distribution is considered rigid one can use electrostatics to transform
V(Z,r) into an ion-ion potential. This is shown at the bottom of Figure 9 for

+ 4+ . .
He—He interactions.
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B. The Bquation of State

To obtain the equation of state it is necessary to iterate Egs. 4-8 until
the density constraints of Figure 2 are satisfied. Rubidium has been chosen
to illustrate the nature of the results that are obtained. Figufe 10 gives
the approximate range of p,T space for which the condition A;a < 0.8 is
satisfied. The curve for X/AD < 1 lies well inside the shaded region. The
peculiar shape of this region is due to the fact that for fixed density the
Coulomb coupling increases with decreasing temperature. For densities
somewhat less than normal solid density the low temperature state is a neutral
gas so that the Coulomb coupling falls back to zero and the equations are
subject to the convergence properties of ordinary gases. The lower branch of
the shaded region has not actually been located and is intended only to be
schematic. For the alkali metals it is possible to make calculations below
the lower limit branéh by assuming that the fundamental# species are electrons
and Ro' ions whose cores are uncoupled from the plasma.

Figure 11 gives ACTEX calculations of PV/NokT vs T for densities of
0.0001, 0.1, 1.0 and 10.0 g/cc corresponding to the solid lines. Also plotted
except for 0.1 g/cc are some Thomas-Fermi-Kirzhnits (TFK) calculaticns12
with OCP ion corrections. Shell structure effects are very prominent in the
low density ACTEX results. Due to the large energy difference, as the
temperature is reduced, there is a large separation between the filling of the
K-shell and the onset of L-shell formation. The separation between the L and
M shells is much less and only a change in slope is observed between the M and
N shells. There is again a large separation between the filling of the 4p
subshell and the formation of neutral 5s Rb atoms. The TFK results are found

to be a remarkably gcod average of the quantum statistical curve. The maximum
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differences are approximately 10% when T > 100 eV and around 30% in the 1 < T
< 5 range.

The ACTEX resiults for p = 0.1 g/cc show a considerable lessening of the
shell structure effects although the K-L shell separation is still large. For
p = 1.0 g/cc the L—M shell separation is observable only as a change in
slope. At this density the TFK results differ from the ACTEX results by at
most 9% when T > 100 eV. At p = 10 g/cc the ACTEX calculations shows only
slight shell structure effects even for tﬁe K shell. The difference between
the two calculations at this density is no more than 4% when T > 200 eV. Even
though the percentage errors are small the TFK calculations grossly
misrepresents the non-ideality correction in the kilovolt range where the
plasma is almost completely ionized. Correspondingly, the percentage errors
for low Z plasmas are somewhat higher than those found here for Rb.

Figure 12 shows ACTEX for various orders of approximation. The curve
labeled Saha oorrespmdé to turning off all interaction terms, i.e. retaining
only the activity terms of order z. The curve labeled 5/2 expansion includes
all interaction terms through 5/2 powers in the activity. The curve labeled
OCP ion-ion correction corresponds to Egs. 4-8 and the cuvae labeled N* is the
corresponding total number of free particles, i.e. the total number of free
electrons plus one. The 5/2 expansion curve is seen to differ at most by 7%
with the Saha curve, whereas, using ion-ion corrections fitted to the OCP
result produces results which differ by as much as 19%. The ion correction is
actually somewhat larger than this indicates since the ionization state has
now been shifted up to the N* curve. In fact the ion correction reduces the
pressure by 38% at T = 100 eV,

Figure 13 gives Cv/38 k vs T obtained from ACTEX for various densities.

The curves show considerable structure and density dependence. In the
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temperature range plotted there are three main peaks for p = 0.0001 g/cc. The
one around 1200 eV corresponds to the filling of the K-shell. The one around
280 eV corresponds to the L-shell, and the structured peak around 70 eV
correspands to the filli_ng of the 4s and 4p subshells. It is not plotted but
the TFK curve is "in error by more than a factor of two and shows no shell
structure effects. The specific heat curves are considerably smoothed as the
density is increased but still show appreciable shel.l structure oscillations
at 10 g/cc.

From the results presented here it is clear that the TFK theory yields
good equation of state results in a smoothly averaged way. They are even good
quantitatively for the pressure but are of little value, except at high
densities for any application which depends on derivative quantities such as

sound speed and specific heat.

IV. Concluding Remarks

This paper has reviewed the theoretical apparatus for going beyond
intuitive model approaches for obtaining the equation of state of strongly
coupled reacting plasmas. By concentrating on the underlying analytic
structure, rather than a diagrammatic study of various orders of
approximation, it has been possible to derive an activity expression which
simultaneously treats ionization equilibrium and strong ion coupling. This
work should have many applications in applied problems of current interest.
The results presented here are reéresentative of the type of data that can be
generated. It is anticipated that in the future this work will be extended so
that the restriction on A;a can be relaxed and that the general approach

will be extended to include non-equilibrium properties.



13

Some possible topics for future work, depending on interest, are:

1)

2)

3)

4)

5)

6)

7)

Calculate high order electron-ion terné using the pseudopotential
method presented in Ref. 7 (1978). This is of particular importance

to singly ionized alkali plasmas.

~ Study transport coefficients to see if compensation between bound and

scattering states, and the introduction to the shifted Debye energy
levels has any fundamental impact.

Evaluate computationally fast model. approaches in common use and make
modifications to bring them into closer agreement with fundamentally
oorrect approach.

Invert the activity expression to find the best free energy
minimization procedure.

Continue the isoelectronic energy level fitting procedure to higher 2
sequences.

Extend diffraction and exchange corrections.

Carry out analysis for two temperature plasmas such that electrons

and ions equilibrate among themselves but not each other.
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Appendix A

S-Expansion for Multi-Component Quantum Plasmas

In step 3 we are essentially treating a completely ionized quantum system
of electrons and nuclei. No hint of composite particles has yet entered the
analysis. Therefore the activity expression at this point need only be a
function of Zgo and Zi s the activities of electrons and nuclei
respectively. The resulting expression is shown in Figure 2. To thé terms
given P/KT appears to be a simple extension of the corresponding one component
result given in Figqure 1. However, cross derivatiyes start to appear in the
next group of terms beyond those given which considerably complicate the
analysis.

Figure 3 displays the leading terms in the S-function. It is shown that
the leading term is just the Debye-Huckel term. Corrections in X/AD to this

10 7

term have been given by DeWitt (1978). The s,. are

13
the negative of the virial coefficients except the lowest two orders of

and also Rogers

perturbation in (Bgigj) are subtracted out. When %/}, % 1 the second
order term needs to be modified.6 For quantum systems the two-body virial
coefficient can be calculated from the Beth-Uhlenbeck expression where the
En- Q(AD) are the energy levels for the screened Coulomb potential. These

are modified to some extent when X/ ¥ 1. The &, are the corresponding

L
phase shifts, and p is the relative momentum. For heavy ions the classical
virial coefficient is always adequate. For B ce SOME modifications of the

Beth-Uhlenbeck formula to account for exchange are necessary.l‘l
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(1) (2) (3)

|

!

Collect terms in S-expansion
in terms of powers of z, i.e.,

introduce cluster coefficients
for the Debye potential,

Bu =k f e "ol

and insert Slater sums

(4)

Introduce augmented set of Renormalize equations to Thermal properties of plasmas
activity variables. Recollect | account for strong ion at all stages of ionization
term on basis of effective coupling. '
n-body interactions.
. hE Validfor A, A, =1 >

Valid for A = —— = 1 X

A kT Ap A, arbitrary, y < 0.5
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Fig. 1. Schematic of theoretical procedure

Mayer S-function
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Fig. 2. P/KT as a functional of S
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= 2 2 3
S(ze'za> SR + ze see + Zzezasea + zcxsaa + zeseee +.

Debye-Hiickel correction
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Beth-Uhlenbeck virial coefficient
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n
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Fig. 4. Cluster coefficients for the plasma pot.
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E. G. split the two body trace

5, =S, +S:

[ eq

where

~Eqo/k
Sto=z2z /2N Y (22+1le ™ o1+ E, . /kT)
ng¢

\/— 3 = - d5s2 —p2/2ug kT
S22 2uf (T@sne -
(] Q

dp °
AN A
oy — 2( 1) _ TP
w, w1>+21r>\0<k_r> 2\ T D
and
w0, = T (204 1) = —— (20, /a3 — 0.2289

n 9 4

w, = Y, (20+1) EnQ/kT=<
ne

(22, /a,)1/2 — 0.4932) /KT
15/57

Fig. 5. Introduce composite particle activities

Sea O\D ) = e/\aa zea

where
. - Ze?
ea kT>\D

when A:a <1, a useful expansion is

Sea()\D) = (1 + A:a + Ae*f/Z) zea

Fig. 6. Define an activity for one electron composites
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g —= }\; = {(T/[Mrez(ze + Zzzq + (Z-1)zzm + .. )]}A

Composite particle activity
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Shifted energy levels
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Fig. 7. Cont.) z52 expansion for complex plasmas
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Obtained by iteration, using a relativistic wave,
EQ. to match experimental data

Fitting function for states of different parentage
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Fig. 8. Isoelectronic potential
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Fig. 12. Contributions to pressure for RB at 1.0 g/cc
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Fig. 13. Rubidium specific heat



